Honors Chemistry Final 2015 ANSWERS to the FINAL EXAM REVIEW

Chapter 10: Stoichiometry

1. Use the following balanced equation to answer questions (2 points each)
$\mathbf{2 A l}\left(\mathrm{CO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}$
a. 2:3 What is the molar ratio for $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ and $\mathrm{H}_{2} \mathrm{O}$?
b. 3 mol How many moles of CO_{2} are produced when 3 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ react?
c. 2 mol How many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced when 2 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacts?
2. How many moles of oxygen are needed to react with 87 g of lithium?

$$
4 \mathrm{Li}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}
$$

$$
87 \mathrm{~g} \mathrm{Lix} \frac{1 \mathrm{~mol}}{6.94 \mathrm{~g} \mathrm{Li}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} \mathrm{Li}}=\underline{3.13 \mathrm{~mol} \mathrm{O}_{2}}
$$

3. Use the equation to determine what mass of FeS must react to form 326 g of FeCl_{2}.

$$
\begin{aligned}
& \mathrm{FeS}+2 \mathrm{HCl} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{FeCl}_{2} \\
& 326 \mathrm{~g} \mathrm{FeCl} \\
& 2
\end{aligned} \frac{1 \mathrm{~mol}^{2}}{126.75 \mathrm{~g} \mathrm{FeCl}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{FeS}}{1 \mathrm{~mol} \mathrm{FeCl}_{2}} \times \frac{87.91 \mathrm{~g} \mathrm{FeS}}{1 \mathrm{~mol}}=\underline{226 \mathrm{~g} \mathrm{FeS}}
$$

4. If a piece of magnesium with a mass of 2.76 g is added to a solution of hydrochloric acid (HCl), what mass of hydrogen gas would be produced?
$\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
$2.76 \mathrm{~g} \mathrm{Mg} \mathrm{x} \frac{1 \mathrm{~mol}}{24.31 \mathrm{~g} \mathrm{Mg}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{Mg}} \times \frac{2.02 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol}}=.229 \mathrm{~g} \mathrm{H}_{2}$
5. How many grams Au can be produced when 500 g of Rb is used to reduce it:

$$
\mathrm{Au}_{2} \mathrm{O}_{3}+6 \mathrm{Rb} \rightarrow 3 \mathrm{Rb}_{2} \mathrm{O}+2 \mathrm{Au}
$$

$500 \mathrm{~g} \mathrm{Rb} \times \frac{1 \mathrm{~mol}}{85.47 \mathrm{~g} \mathrm{Rb}} \times \frac{2 \mathrm{~mol} \mathrm{Au}}{6 \mathrm{~mol} \mathrm{Rb}} \times \frac{196.97 \mathrm{~g} \mathrm{Au}}{1 \mathrm{~mol}}=384 \mathrm{~g} \mathrm{Au}=400 \mathrm{~g}$ (Sig Figs)
6. How many grams of CO_{2} are liberated when 400 g of Propane is burned?

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2} \\
& 400 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{1 \mathrm{~mol}}{44.11 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{Mg}} \times \frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol}}=1197 \mathrm{~g} \mathrm{CO}_{2}=1000 \mathrm{~g}(\mathrm{Sig} \text { Figs })
\end{aligned}
$$

7. How many grams in 4.2 moles of KNO_{2} ?
$4.2 \mathrm{~mol} \times \underline{85.11 \mathrm{~g}}=357.46 \mathrm{~g}=360 \mathrm{~g}$ (Sig Figs) 1 mol

Chapter 11: Heat \& Energy

Practice Problems:

1. Label each example as exothermic or endothermic
a. $2 \mathrm{H} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{H} 2 \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}^{\circ}=-243 \mathrm{~kJ} \quad$ exothermic $(\Delta \mathrm{H}$ is negative $)$
b. H2B4O7(s) \rightarrow B2O3(s) $+\mathrm{H} 2 \mathrm{O}(\mathrm{l})$ feels warm
c. $\mathrm{H} 2 \mathrm{~B} 4 \mathrm{O} 7(\mathrm{~s})+\mathrm{H} 2 \mathrm{O}(\mathrm{I}) \rightarrow 4 \mathrm{HBO} 2(\mathrm{aq})+11.3 \mathrm{~kJ}$
d.
 exothermic (exo = warm) exothermic (energy is a product)
exothermic
2. How much heat is required to heat 40.0 g of water from $25.0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$? $\left(\mathrm{C}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& q=m C \Delta T \\
& q=40.0 \mathrm{~g}\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(75-25^{\circ} \mathrm{C}\right) \\
& \mathrm{q}=8360 \mathrm{~J}
\end{aligned}
$$

3. Be able to interpret a phase change diagram.
the flat sections represent phase changes - heat energy is still being applied as phase changes (though there is no change in temp)
Recognize phase change vocab: melting, freeze, fusion, evaporation, condensation

Chapter 12: Gases

1. Compare the characteristics of solids/ liquids/ gases:

Solids definite shape, definite volume; particles vibrate in position
Liquids indefinite shape, definite volume
Gases indefinite shape, indefinite volume; particles are far apart (low density, compressible);
particles move in straight lines and collide with walls of the container
2. 91 K A 3.00 liter $\left(\mathrm{V}_{1}\right)$ sample of neon gas at $0^{\circ} \mathrm{C}\left(\mathrm{T}_{1}=273 \mathrm{~K}\right)$ and $1.25 \mathrm{~atm}\left(\mathrm{P}_{1}\right)$ is compressed into a 1.00 liter $\left(\mathrm{V}_{2}\right)$ container. If the pressure remains constant, what temperature will the container be?

$$
\mathrm{T}_{2}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}}{\mathrm{P}_{1} \mathrm{~V}_{1}} \rightarrow \quad \mathrm{~T}_{2}=\underline{\mathrm{V}_{2} \mathrm{~T}_{1}}=\underline{1.00 \mathrm{~L} \times 273 \mathrm{~K}}=\underline{91 \mathrm{~K}}
$$

3. 96.22atm What is the pressure ($\mathrm{P}=$?) exerted by 64 grams (convert to moles -n) of oxygen confined to a volume of $500 \mathrm{~mL}(\mathrm{~V}=.500 \mathrm{~L})$ at $20^{\circ} \mathrm{C}(\mathrm{T}=293 \mathrm{~K})$?

$$
\begin{aligned}
& 64 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol}}{32.00 \mathrm{~g}}=2.0 \mathrm{~mol}(\mathrm{n}) \\
& \mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{~V}}=\frac{2.0 \mathrm{~mol} \times .0821 \times 293 \mathrm{~K}}{.500 \mathrm{~L}}=\underline{96.22 \mathrm{~atm}}
\end{aligned}
$$

4. 1.3 mol How many moles of gas are in a $52 \mathrm{~L}(\mathrm{~V})$ sample collected at $220 \mathrm{~K}(\mathrm{~T})$ and .444atm?

$$
\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{TR}}=\frac{.444 \mathrm{~atm} \times 52 \mathrm{~L}}{220 \mathrm{~K} \times .0821}=\underline{1.3 \mathrm{~mol}}
$$

5. 4.9 L Find the new volume $\left(\mathrm{V}_{2}=\right.$? $)$ when a $2.1 \mathrm{~L}\left(\mathrm{~V}_{1}\right)$ sample of a gas collected at 245 Kelvin (T_{1}) and 2.1 atm $\left(P_{1}\right)$ is changed to standard conditions (STP: $T_{2}=273 \mathrm{~K}, \mathrm{P}_{2}=1 \mathrm{~atm}$).

$$
V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=\frac{2.1 \mathrm{~atm} \times 2.1 \mathrm{~L} \times 273 \mathrm{~K}}{245 \mathrm{~K} \times 1 \mathrm{~atm}}=\underline{4.9 \mathrm{~L}}
$$

6. $\mathbf{2 3} \mathbf{m L}$ Find the new volume $\left(\mathrm{V}_{2}=\right.$? $)$ of a gas that changes $65 \mathrm{ml}\left(\mathrm{V}_{1}\right)$ at $150 \mathrm{mmHg}\left(\mathrm{P}_{1}\right)$ to 425 $\mathrm{mmHg}\left(\mathrm{P}_{2}\right)$.
$V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}}=V_{2}=\frac{P_{1} V_{1}}{P_{2}}=\frac{150 \mathrm{mmHg} \times 65 \mathrm{~mL}}{425 \mathrm{mmHg}}=\underline{23 \mathrm{~mL}}$
7. Explain the relationship between each of the variables for the following gas laws:

- Boyle's Law: as P increases, V must increase if T and n are constant
- Charles' Law: as T increases, P increases (greater $\mathrm{T}=$ more movement = more collisions)
- Avogadro's Law: as n (moles) increases, V increases (think about blowing up a balloon)

Chapter 13: Solutions

1. Interpret solubility curves:

a. What substance is most soluble at $20^{\circ} \mathrm{C}$? KClO_{3}
b. What substance is least soluble at $90^{\circ} \mathrm{C}$?
$\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
c. What is the solubility of KNO_{3} at $50^{\circ} \mathrm{C}$? 80 g
d. How many grams of NaNO_{3} can dissolve in 100 grams of water at $60^{\circ} \mathrm{C}$? 122-123 g
e. If 70 g of KCl is dissolved at $70^{\circ} \mathrm{C}$, is the solution saturated, unsaturated, or supersaturated? supersaturated
2. 33 M Calculate the molarity when 2 mol of CuSO_{4} dissolves in 6 L of water.

$$
\frac{2 \mathrm{~mol}}{6 \mathrm{~L}}=.33 \mathrm{M}
$$

3. 14 M Find the molarity of NaCl when 20 grams are mixed with 2500 ml of water.
$20 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{58.44 \mathrm{~g}}=.3422 \mathrm{~mol}$

$$
.3422 \mathrm{~mol}=.14 \mathrm{M}
$$

2.500 L
4. 18 g What mass of HCl is needed to prepare 1.5 L of a 0.010 M solution.
$1.5 \mathrm{~L} \times .010 \mathrm{~mol}=.015 \mathrm{~mol}$
1L
$.015 \mathrm{~mol} \times \underline{36.46 \mathrm{~g}}=.55 \mathrm{~g}$
1 mol

Chapter 15: Acids and Bases:

Practice Problems:

1. Label the properties of acids and bases:

	Acids	Bases
Dissociates into___ions	H^{+}	OH^{-}
pH range?	$0-7$	$7-14$
Taste?	Sour	Bitter
Feels?		Slipper
Conducts Electricity?	Yes	Yes
Turns Phenolphthalein__	Clear	Pink

2. 3 Find the pH of a $1.0 \times 10^{-3} \mathrm{M}$ solution of HCl

$$
\mathrm{pH}=-\log \left[1.0 \times 10^{-3}\right]=3
$$

3. 11.70 Find the pH of a .005 M NaOH solution.

$$
\begin{aligned}
& \mathrm{pOH}=-\log [.005]=2.30 \\
& \mathrm{pH}+\mathrm{pOH}=14 \\
& \mathrm{pH}=14-2.30 \\
& \mathrm{pH}=11.7
\end{aligned}
$$

4. $\underline{2} \mathrm{M}$ What is the unknown concentration of base if 40 mL of NaOH is titrated with 80 mL of 1 M solution of standardized HCl ?

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}} \\
& 1 \mathrm{M}(80 \mathrm{~mL})=\mathrm{M}_{\mathrm{b}}(40 \mathrm{~mL})
\end{aligned}
$$

5. Write the neutralization reaction for the reaction of KOH and HBr :

$$
\mathrm{KOH}+\mathrm{HBr} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{KBr}
$$

Chapter 16: Reaction Rates

1. What are the two conditions for a successful reaction?

Orientation of molecules
Enough energy to overcome the activation energy for the reaction to occur
2. Explain how the following factors change reaction rates:

- surface area of a solid reactant
increase surface area (powder) because a greater surface area means there are more possible sites for collisions = faster reaction
- concentration of a reactant
increase concentration so that there are more reactant particles which means more collisions = faster reaction
- temperature increase temperature because temperature is a measure of the average kinetic energy, so particles move faster and collide more often = faster reaction
- presence of a catalyst catalysts speed up reactions by lowering the activation energy

